Joint Active User Detection and Channel Estimation Via Bayesian Learning Approaches in MTC Communications
نویسندگان
چکیده
To support the massive machine-type communications (mMTC) scenario for Internet of Things (IoTs) applications featured by large-scale device connectivity and low activity, grant-free non-orthogonal multiple access (GF-NOMA) compressive sensing (CS)-based multi-user detection methods (MUD) are developed. In this paper, we develop two Bayesian CS-based methods, i.e., sparse Learning (SBL) fast inverse-free (FI-SBL), joint MUD channel estimation (CE) in GF-NOMA with Low-Activity Code Division Multiple Access (LA-CDMA) as technology. SBL is investigated robust CE utilizing parameterized Gaussian prior information. Then to resolve high computational complexity SBL, FI-SBL proposed, which replaces matrix reversion operations relaxed evidence lower bound. Simulation results show that proposed algorithms outperform traditional reduces significantly.
منابع مشابه
Sparse Bayesian Learning for Joint Channel Estimation and Data Detection in OFDM Systems
Bayesian approaches for sparse signal recovery have enjoyed a long-standing history in signal processing and machine learning literature. Among the Bayesian techniques, the expectation maximization based Sparse Bayesian Learning (SBL) approach is an iterative procedure with global convergence guarantee to a local optimum, which uses a parameterized prior that encourages sparsity under an eviden...
متن کاملinvestigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances
در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...
Joint Decorrelating Multiuser Detection and Channel Estimation in Asynchronous CDMA Mobile Communications Channels
The asymptotic efficiencies of two decorrelators, path-by-path and channel-matched decorrelators, are analyzed in fading multipath propagation environments, and based upon the analytical results, a new joint multiuser detection and channel estimation scheme is proposed for asynchronous code division multiple access (CDMA) mobile communications channels. In the path-by-path decorrelator, each of...
متن کاملChannel Estimation And Multiuser Detection In Asynchronous Satellite Communications
In this paper, we propose a new method of channel estimation for asynchronous additive white Gaussian noise channels in satellite communications. This method is based on signals correlation and multiuser interference cancellation which adopts a successive structure. Propagation delays and signals amplitudes are jointly estimated in order to be used for data detection at the receiver. As, a mult...
متن کاملBayesian Active Learning for Posterior Estimation
This paper studies active posterior estimation in a Bayesian setting when the likelihood is expensive to evaluate. Existing techniques for posterior estimation are based on generating samples representative of the posterior. Such methods do not consider efficiency in terms of likelihood evaluations. In order to be query efficient we treat posterior estimation in an active regression framework. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Vehicular Technology
سال: 2021
ISSN: ['0018-9545', '1939-9359']
DOI: https://doi.org/10.1109/tvt.2021.3077569